Fiber Properties Preview

- Optical attenuation
 - Power loss in fiber
 - » Causes...
 - Absorption and scattering in glass
 - Glass impurities, fiber imperfections, bends
 - » Minimum loss at 1550 nm

- Fiber dispersion
 - Pulse spreading limits maximum data rate
 - Causes
 - » Fiber modes
 - » n is function of wavelength
 - » Waveguide effects
 - Zero dispersion near 1300 nm
- Nonlinear effects
 - Accumulate over long distances
 - Limit maximum power that can be put into a fiber

Fiber Loss: Attenuation Factor

• Optical power decreases exponentially as light travels through fiber

$$P(z) = P(0)e^{-\alpha_p z}$$

Attenuation factor α (dB/km)

- Expressed as dB/km loss

$$\alpha = \frac{-10\log(P(z)/P(0))}{z}$$

- Typical values: few tenths \rightarrow few dB/km
- Wavelength-dependent

Fiber Loss: Numerical Example p. 35

- Optical fiber losses: 0.6 dB/km at 1300 nm. If 100 μ W of power at transmitter, how much power at 22 km?
- Use dBm
- See classroom discussion

Fiber Loss: Attenuation (cont.)

- Factors:
 - Material absorptions
 - Impurity absorptions
 - Scattering effects
 - Interface inhomogeneities
 - Radiation at bends

- Material absorptions: Silica (SiO2) absorption
- Impurity absorptions
 - Impurity metals
- Scattering effects
 - Molecular scattering (~●-1/4); long-wavelength limit
 - Mie scattering
 - Nonlinear scattering
- Interface inhomogeneities
 - Particles
 - Geometry defects
- Bend losses
 - MM fiber: geometry changes light couples out of core
 - SM fiber: light tries to accelerate beyond c/n; radiates power
 - Negligible below critical turn radius of ~ 1 cm

Fiber Loss: 1. Material Absorption

- 1. Molecules of basic fiber material (silica = SiO₂)
 - Fundamental loss limit at high λ s
 - » Change materials to lower loss ("Ultralow-loss" fiber)
- 2. Material impurities
 - Metallic ions (remove by purification)
 - » Iron, cobalt, copper, chromium
 - ppb (parts per billion) concentrations
 - OH⁻ water ion (remove by chlorine drying)

- 3. Hydrogen effects
 - Increased losses at 1.2 and 1.6 $\,\mu\text{m}$
 - Produced by
 - » Corrosion or
 - » Bacteria
 - Increases loss by interaction with glass
 - Solution:
 - » Eliminate H₂ sources or
 - » Add impermeable coating to fiber

Fiber Loss: 2. Scattering Loss

- Wave interacts with "particle" or molecules
- Transfers power to other directions
 - a. Linear scattering:
 - » Scattered power proportional to incident power
 - » No change in frequency of scattered light
 - » Rayleigh scattering.
 - Particles << λ

Minimum loss at 1550 nm

in silica (SiO₂) "Magic wavelength #1"

p. 38

Fiber Loss: 2. Scattering Loss (cont.)

- a. Linear scattering (cont)
 - Mie scattering
 - » Particles ~λ
 - Inhomogeneities
 - Core-cladding refractive index variations
 - Core-cladding interface impurities
 - Diameter fluctuations
 - Strains in fiber
 - Bubbles in fiber
 - » Solution:
 - Remove imperfections

Fiber Loss: 2. Scattering Loss (cont)

b. Nonlinear Scattering

- Cause: high E field (V/m) (i.e., combination of power, area, and distance)
- Power scattered forward, backward, or side directions, depending on interaction

A. Brillouin scattering:

- » Photon undergoes nonlinear interaction to produce...
 - Vibrational energy ("phonons") and
 - Scattered light ("photons")
- » Upward and downward frequency shifts
 - Strength of scattering varies with scattering angle
 - Maximum in backward direction; minimum of zero in forward direction
- » Solution: keep power level below threshold
 - Nonlinear scattering imposes "ceiling" on source power
 - Threshold power level

$$P_B = (17.6 \times 10^{-3}) a^{2} \lambda^{2} \alpha \Delta v'$$
 (typically ≤ 1 W in SM fiber)

Props-8

• Ex., 8/125 SM fiber with 0.8 dB/km loss at 1300 nm; source $\Delta\lambda$ of 0.013 nm, \Rightarrow P_B = 0.879 W.

Fiber Loss: 2. Scattering Loss (cont.)

- b. Nonlinear Scattering (cont)
 - B. Raman scattering:
 - » Nonlinear interaction produces....
 - High-frequency phonon (instead low-frequency phonon of Brillouin scattering)
 - Scattered photons
 - » Scattering predominantly in forward direction (power not lost)
 - » Power level threshold:

$$P_{\text{Raman}} = (23.6 \times 10^{-2}) a^{2} \lambda' \alpha \text{ (typically few W)}$$

- » Solution: keep power level below threshold
 - Single channel fiber
 - Brillouin threshold lower than Raman and determines power "ceiling"

Props-9

• Ex., 8/125 SM fiber with 0.8 dB/km loss at 1300 nm; source $\Delta\lambda$ of 0.013 nm,

$$\Rightarrow$$
 P_R = 3.93 W

Fiber Loss: 3. Interface Inhomogeneities

- Some typical inhomogeneities
 - Impurities trapped at core-cladding interface
 - Impurities in fiber buffering
 - Geometrical changes in core shape and/or size
- SM fibers more susceptible
- Solution: Remove source of problem
 - Manufacturing quality control

Fiber Loss: 4. Bend Losses

A. Macrobends

Large bends of cable and fiber

- At bend, core/cladding angle of incidence changes and power lost
- Lost power depends on bend radius
 - Negligible losses until bend radius reaches critical size (typically < 1 cm)
 - » Solution:
 - Limit bend radius
 - Add cable stiffener

B. Microbends:

Small-scale bends in core-cladding interface

- Develop during fiber deployment or local mechanical stresses
- Develop due to cabling, spooling, or wrapping fiber on bobbin
 - » Cabling loss and spooling loss
 - » Typical added loss:
 - ₱1 to 2 dB/km
 - » Solution (partial) : careful winding

Props-11

• Expression for critical bend radius:

$$r_{\rm critical} \approx 3n_2 \lambda / 4\pi \, \text{NA}^3$$

Fiber Loss: 4. Single-Mode Fiber Bend Loss

- Bend loss particularly important in SM fiber
- Dramatic loss increase above critical wavelength if fiber bent or perturbed
 - Appreciably high @ 1550 nm in 1300-nm designed fibers
 - Susceptibility depends on MFD and λ_{cutoff}
 - Worst-case is fiber with...
 - » Large MFD and low λ_{cutoff}
 - » Avoid this combination!
- Minimize bend losses by...
 - Choosing small ratio of core to fiber diameter
 - Having large ∆ and/or...
 - Jacketing with compressible material

Loss Summary

- Loss in fiber due to...
 - Absorption
 - Scattering (linear and nonlinear)
 - Fiber inhomogeneities
 - Bends
 - » Macrobends
 - » Microbends

- Intrinsic losses due to
 - Absorption
 - Scattering
- Minimum loss at 1.55 μ m
- Theoretical minimum loss (~0.15 dB/km) almost achieved in practice

Loss Measurements

- Insertion loss measurement
 - -Uses optical source and optical power meter
 - -Measure loss of piece of fiber
 - -Add fiber to be tested
 - -Extra loss is loss of fiber (plus connector/splice losses)
- Cutback method
 - -Uses optical source and opt1cal power meter
 - -Measure loss of fiber under test
 - -Delete some length of the fiber
 - -Reduction of loss is loss of fiber
- Optical Time Domain Reflectometer (OTDR)
 - -See following discussion

OTDR

- OTDR Optical Time-Domain Reflectometer
- Ubiquitous fiber optic instrument
- Requires access to only one end of fiber
- Can measure
 - Fiber length
 - Distance to fiber breaks, connections, splices
 - Fiber loss (dB/km)
 - Connector and splice loss

OTDR Operation

- Consists of pulsed laser, detector, electronic processing
- Weak backscatter from glass molecules
- Pulsed source, time-gated receive
- Received power level stored in memory

• See problems 4, 5, 6, and 8 for details.

Dispersion in Optical Fibers

• Pulse spreads as it propagates; overlapping causes intersymbiol

interference

- Amount of spreading
 - Limits how close (in time) two adjacent output pulses are
 - Limits maximum data rate
- Primary sources of spreading in fibers:
 - Group velocity dispersion
 - » Material dispersion
 - » Waveguide dispersion
 - Modal dispersion

Group Velocity Dispersion

- GVD Group velocity dispersion
- Consists of
 - Material dispersion
 - Waveguide dispersion
- We consider each separately and add effects together

• Ex.: material dispersion in a 62.5/125 fiber with n1 = 1.48 and ♥ = 1.5% is 86.3 ps≺km₫ 4nm₫ at 850 nm and is +35.6 ps≺km₫ ≺nm₫ at 1500 nm

Material Dispersion (cont.)

• Pulse spread due to material dispersion

$$\Delta \tau_{\text{mat}} = -\frac{L}{c} \frac{\Delta \lambda}{\lambda} \underbrace{\left(\lambda^2 \frac{d^2 n_1}{d\lambda^2}\right)}_{\text{Figure 3.8, p. 47}}$$

• Frequently normalized: $D_{mat} = \Delta \tau_{mat} / (L \Delta \lambda)$ [ps·km⁻¹·nm⁻¹]

Fiber Dispersion: B. Waveguide Dispersion

- In low material-dispersion region of 1000 to 1600 nm in SM fibers...
 - Waveguide dispersion becomes important
 - Negligible in MM fibers and in SM fibers operated below 1,000 nm and above 1600 nm
- Cause: velocity of mode is function of a/λ
- Waveguide dispersion

$$\Delta \tau_{wg} \approx -\left(\frac{n_2 L \Delta}{c}\right) \left(\frac{\Delta \lambda}{\lambda}\right) \left(V \frac{d^2(Vb)}{dV^2}\right)$$

 $D_{WG} = \Delta \tau_{WG} / L \Delta \lambda \text{ [ps-km}^{-1} \cdot \text{nm}^{-1}]$

- Ex.: At 1300 nm, 9/125 single-mode fiber with n_1 = 1.48 and Δ = 0.22%
 - \Rightarrow D_{WG} = -4.00 ps·km⁻¹·nm⁻¹

Fiber Dispersion: Zero-Dispersion SM Fiber

- SM fiber:
 - Total dispersion = group velocity dispersion = material + waveguide dispersions
- Small positive material dispersion can cancel small negative waveguide dispersion
 - Result: zero dispersion (at single λ)

"Magic" wavelength #2

- Zero-dispersion point in SM fiber occurs near 1300 nm

Fiber Dispersion: Dispersion-Adjusted SM Fibers

- Waveguide dispersion sensitive to...
 - Doping levels, a, λ , n(r)
- Achieve zero dispersion at other wavelengths
 - anywhere from 1300 to 1700 nm
 - Ex., Combine at 1550 nm
 - » Minimum losses
 - » Zero dispersion
 - » Called dispersion shifted fiber

Fiber Dispersion: Dispersion-Flattened Fibers

- Alternative approach:
 - Reduce dispersion to nonzero minimum between 1300 and 1500 nm
 - Allows use of both 1300 & 1500 nm sources
 - » Reasonable loss and dispersion
- Called dispersion flattened fiber
- Multiple-cladding fibers successfully used

Fiber Dispersion: C. Modal Dispersion

- Only in multimode fibers
- Cause:
 - Each mode has slightly different path to receiver

• Time delay between fastest and slowest is modal pulse delay distortion and in SI fiber is...

$$\Delta \tau_{\text{SI modal}} = \frac{L(n_1 - n_2)}{c} \left(1 - \frac{\pi}{V}\right) \approx \frac{L(n_1 - n_2)}{c} = \frac{L\Delta n_1}{c}$$

$$-D_{modal} = \Delta \tau_{modal} / L \text{ [ps·km}^{-1}]$$

Props-25

• Ex.: 50/125 step-index fiber with n₁ = 1.47 and Δ = 1.5% \Rightarrow $\Delta \tau_{modal}/L \approx 73.5$ ns·km⁻¹

Modal dispersion II: Graded-Index Fibers

- Gl fiber
 - Variable light velocity
 - Sinusoidal paths
- High-order modes have longer path lengths but also have higher average velocity
 - Longer path length approximately canceled by higher velocity
- Delay time of *m*-th mode....

$$\tau_{\text{GI modal}} = \frac{LN_{g1}}{c} \left(1 + \frac{g - 2 - \varepsilon}{g + 2} \Delta \left(\frac{m}{N} \right)^{\frac{g}{g + 2}} \right)^{\frac{g}{g + 2}} + \text{other terms of } \Delta^3, \Delta^4, \text{ etc.}$$

$$\varepsilon = -\frac{2n_1}{N_{g1}} \frac{\lambda}{\Delta} \frac{d\Delta}{d\lambda}, \quad N_{g1} = n_1 \lambda \frac{n_1}{\lambda} \frac{dn_1}{d\lambda}, \text{ and } N = a^2 \Delta k^2 n_1^2 \frac{g}{g+2}.$$

Modal Dispersion II: GI Fibers (cont.)

• Linear term in Δ can be eliminated if...

$$g = g_{\text{opt}} = 2 - \frac{2n_1}{N_{g1}} \frac{d\Delta}{d\lambda}$$

- Usable approximation is

$$g_{\rm opt} \approx 2 - (12\Delta/5)$$

• Net delay is

$$\Delta \tau_{\text{GI modal}} \approx \begin{cases} n_1 \Delta \frac{g - g_{\text{opt}}}{(g+2)c} & g \neq g_{\text{opt}} \\ \frac{n_1 \Delta^2 L}{2c} & g = g_{\text{opt}} \end{cases}$$

- $\Delta\tau_{\text{modal}}$ can be positive or negative
- GI modal dispersion factor of ~∆ smaller than SI
 - Max bit-rate of GI is ≥100x max bit-rate of SI

Fiber Dispersion: Dispersion Units

- Modal dispersion:
 - Dominates in MM fibers
 - » Less in GI fibers than SI fibers
 - Depends on L
 - Independent of $\Delta\lambda$
 - » Normalized units of [ns-km⁻¹]
 - » Can be given as analog bandwidth-distance product: [GHz·km]
- Material dispersion and waveguide dispersion:
 - Dependent on $\Delta\lambda$ and \boldsymbol{L}
 - Normalized units of [ns·km⁻¹·nm⁻¹]

Bit-Rate and Dispersion

Maximum bit rate

$$B_{R_{
m max}} pprox rac{1}{4\Delta au_{
m total}}$$

where

$$\Delta \tau_{\rm total} = \sqrt{\Delta \tau_{\rm modal}^2 + \Delta \tau_{\rm \tiny GVD}^2} \qquad \text{and} \quad \Delta \tau_{\rm \tiny GVD} = \Delta \tau_{\rm \tiny material} + \Delta \tau_{\rm \tiny waveguide}$$

- Note that $B_{R max} \sim 1/L$
- (bit-rate)-distance product is constant for a given fiber

Fiber Dispersion: Summary

- Total dispersion:
 - Multimode fibers: modal dispersion and material dispersion
 - Single-mode fiber: material dispersion and waveguide dispersion (1000 nm to 1600 nm only)
 - Near 1300 nm, dispersions can cancel
- Dispersion ~L
 - Max bit rate ~ $1/\Delta \tau$ ~ 1/L
 - » Max bit rate \times *L* is constant
- Fibers specified by bit rate-distance product

Fiber Type	(Bit-rate)-distance product
Single-mode	Many Gb/s∙km
Step-index multimode	Few 10s Mb/s •km
Graded-index multimode	Several 100s Mb/s •km

- Bit rate-distance trade-off
 - Longer distances require reduction of bit rate

Dispersion: RMS Pulse-Spreading Approach

- Alternative approach to delay times
- Define RMS pulse width

$$\sigma_s = \sqrt{\int_{-\infty}^{\infty} t^2 p(t) dt - \left(\int_{-\infty}^{\infty} t p(t) dt\right)^2} = \sqrt{\int_{-\infty}^{\infty} t^2 p(t) dt} \quad \text{(for symmetric wave)}$$

· Relate input and output pulse widths

$$\sigma_{\text{out}}^2 = \sigma_{\text{in}}^2 + \sigma_{\text{fiber}}^2$$

where

$$\sigma_{\text{fiber}}^2 = \sigma_{\text{modal}}^2 + \sigma_{\text{GVD}}^2 = \sigma_{\text{modal}}^2 + \left(\sigma_{\text{material}} + \sigma_{\text{waveguide}}\right)^2$$

where

$$\sigma_{\text{modal}}(\text{SI}) \approx \frac{Ln_1\Delta}{c} = \frac{L\left(\text{NA}\right)^2}{4\sqrt{3}\,n_1c} \qquad \sigma_{\text{mod}\,al}(\text{GI}) \approx \begin{cases} \frac{0.246LN_{g1}\Delta\left|g - g_{opt}\right|}{c(g+2)} & 1 > \left|g - g_{opt}\right| >> \Delta \\ \frac{0.150LN_{g1}\Delta^2}{c} \approx \frac{n_1\Delta L}{2c\sqrt{3}} & g = g_{opt} \end{cases}$$

$$\sigma_{\text{material}} \approx \frac{L}{c} \left(\frac{\sigma_{\lambda}}{\lambda}\right) \left(\lambda^2 \frac{d^2n_1}{d\lambda^2}\right) \quad \text{and} \qquad \sigma_{\text{waveguide}} = -\frac{n_2L\Delta}{c} \left(\frac{\sigma_{\lambda}}{\lambda}\right) \left(V \frac{d^2(Vb)}{dV^2}\right)$$

Fiber Nonlinearities Revisited

- Nonlinear effects used to be negligible for modest powers and distances
- Now cause problems because of power levels (and multiple signals) and long distances

$$E(z+dz) = E(z)e^{\left(-\frac{\alpha_p}{2} + jk + \underbrace{\frac{\gamma P(z)}{2A_{eff}}}_{\text{nonlinear term}}\right)dz}$$

- The nonlinear coefficient, γ , is small. Large power, small core area, and/or long distance make effects noticeable
- Nonlinear fiber parameters

Effective area

Effective length

$$A_{eff} = \frac{\left(\iint I(r,\theta)rdrd\theta\right)^{2}}{\iint I^{2}(r,\theta)rdrd\theta} \approx A_{\text{wave}} = \pi(\text{MFD})^{2} \qquad L_{eff} = \frac{1 - e^{-\alpha_{p}L}}{\alpha_{p}} \approx \frac{1}{\alpha_{p}} \text{ (for L >> 1/α_{p})}$$

$$L_{eff} = \frac{1 - e^{-\alpha_p L}}{\alpha_p} \approx \frac{1}{\alpha_p} \text{ (for L >> 1/α_p)}$$

Fiber Nonlinearities (cont.)

- Nonlinear coefficient, γ , is small and can be...
 - real (a gain or loss) or
 - imaginary (phase effect)
- Stimulated scattering
 - » Raman scattering
 - » Brillouin scattering
- Nonlinear index effects
 - » Single-signal
 - Self-phase modulation
 - » Multi-signal
 - Cross-phase modulation
 - Four-wave mixing

Nonlinear Scattering

• Interaction of photon and phonon to produce *frequency-shifted* photon

$$V_{out} = V_{in} - V_{phonon}$$

- Stimulated Raman scattering
 - Input light causes generation of scattered light
 - Coherent scattered light coherent

- Scattered light is broad ($\Delta v \sim$ 6 THz) with center frequency 14 THz below input frequency

Scattered light takes energy from signal and grows exponentially

$$I_{\text{scatter}}(z) = I_{\text{scatter}}(0)e^{G_R I_{\text{signal}}z}$$
 (for $I_{\text{scatter}} \ll I_{\text{signal}}$)

Stimulated Raman Scattering (cont.)

- See sample problem on p. 68 of text.
- Threshold power for "significant" Raman scattering (scattered power equals signal power)

$$P_{\text{Raman}} \approx \frac{16A_{\text{eff}}}{G_R L_{\text{eff}}}$$
 $(G_R = 0.9 \times 10^{-13} \text{ at } 0.694 \, \mu\text{m})$

Stimulated Brillouin Scattering

- Similar to stimulated Raman but phonon frequency is higher
- Linewidth, $\Delta\nu_B$, of scattered light is narrow (~135 MHz in silica glass)
- Signal ("pump") is frequently wider than $\Delta \nu_B$ so we need correction factor of $\Delta \nu_B / \Delta \nu_{\text{pump}}$ to gain coefficient

$$G_{B} = G_{B0} \left(\frac{\Delta V_{B}}{\Delta V_{\text{pump}}} \right) = \left(\frac{2\pi n^{7} p_{12}^{2}}{c\lambda^{2} \rho V_{s} \Delta \lambda_{B}} \right) \left(\frac{\Delta V_{B}}{\Delta V_{\text{pump}}} \right)$$

- $\emph{G}_{\emph{B0}}$ is ~1/ λ^2 and is 4.5x10⁻⁹ cm/W at 1 μ m
- Power threshold

$$P_{
m Brillouin} pprox rac{21 A_{
m eff}}{G_{\scriptscriptstyle B} L_{\scriptscriptstyle eff}}$$

Self-Phase Modulation (SPM)

- Single channel phase effect
- Power in signal can change *n* in material ($\Delta n = n_2 P/A_{eff}$)
- Pulse train passing point in fiber is time-varying power, P(t)
- Power variations in time cause n to change which causes instantaneous frequency to change (frequency chirp)

$$n = n_0 + \underbrace{n_2 P / A_{eff}}_{\text{index change}} \quad \text{and} \quad \phi = \omega_0 t - \frac{\omega_0 nz}{c}$$

$$\omega = \frac{d\phi}{dt} = \omega_0 - \frac{\omega_0 n_2 z}{c A_{eff}} \frac{dP}{dt}$$

- Resultant frequency chirp broadens signal spectrum and increases dispersion effects
- Thereby decreases (bit-rate)-distance product

Cross-Phase Modulation (XPM)

- Multichannel effect (several wavelengths present in fiber, each carrying different data)
- Power fluctuations in *other* channels cause index of refraction to change, causing signal frequency to chirp
- Chirp broadens spectrum of signal light, causing more dispersion, and decreasing (bit-rate)-distance product

Four-Wave Mixing

- · Also called four-photon mixing
- Multichannel effect
- Channels "mix" or "beat" due to nonlinearity and produce intermodulation (IM) frequencies

$$I = k \left| \sum_{i} \left(E_1 + E_2 + \dots + E_i \right) \right|^2$$

- If N signals present, N²(N-1)/2 IM frequencies result
 - e.g., 3 frequencies \Rightarrow 9 IM frequencies
- If frequencies evenly spaced, some IM frequencies fall on top of some signal frequencies and cause interference
- Aggravated by operating near zero dispersion wavelength
- Solution
 - Reduce power
 - Avoid zero-dispersion wavelength region
 - Space channels unequally

Summary of Nonlinear Effects

- Single channel: Brillouin limit (several mW)
- Multichannel signals (see figure)
 - Up to 11 channels: 4-wave mixing (<2 mW/channel)
 - 11 to several 100 channels:
 cross-phase modulation limit (1 mW down to ~70 μW/channel)
 - >several 100 channels: Raman scattering limit (10s μW/channel)

From A.R. Chraplvy, *J. Lightwave Technology*, vol. 8, p. 1548, 1980.

Cables

- Goal:
 - Provide strength and protection (while minimizing cable volume and weight)
- Avoid adding appreciable optical loss
- May have power-carrying conductors
- Desirable cable properties:
 - Minimize stress-produced optical losses
 - High tensile strength
 - Immunity to water vapor penetration
 - Stability of characteristics in environment
 - Ease of handling and installation
 - » Compatibility with installation equipment
 - Low costs
 - » Acquisition
 - » Installation
 - » Maintenance

Cable Components

- Optical fibers: single or multiple fibers
- Buffering material: soft substance around fiber
 - Isolate from radial compressions and localized stresses
- Strength members: high tensile-strength materials for longitudinal strength
 - High-strength, low-weight materials (e.g., Kevlar)
- Power conductors: copper conductors or copper-coated highstrength wires
- Filler yarns: take up space between strength members and provide some buffering and block water
- Jacket: abrasion protection; waterproofing; protection from rodents, fish, etc.; resistance to chemicals; smokeproof; nonflammable; etc.
 - Jacket determines installation properties

- Buffering
 - Loose-buffered: fiber movable in buffer
 - Tight-buffered: immovable fiber
- Tensile strength of fiber cable is sum of individual strengths

$$\star$$
 $T = \sum EiA_i$;

- T is tensile load, S is maximum allowed strain or elongation (e.g., 1%), E_i is Young's modulus of i-th component, and A_i is cross-section area of i-th component
- Potential problems:
 - Elongation of cable
 - * Typical fiber: ~1%
 - * Typical stress member: ~20% before breaking
 - * Solution: wind fiber in helix inside cable

Cables (cont.)

- Wide range of installation environments
 - Ducts
 - Aerial stringing from posts
 - Trenches
 - Underwater installation
 - Laying cable on ground
- Representative duct cable (left)
- Representative aerial cable (right)

Cables (cont.)

- Representative cable for burial in trenches (left)
 - More outer protective layers
- Representative cable for short-distance, undersea transmission (right)
 - Copper-clad steel wires for power and cable-strength
 - Electric power in cable can provoke defensive behavior from sharks and other fish in certain areas; cable may need extra protective layers

Example of Fiber Cable

Fiber Properties Review

- Optical attenuation
 - Power loss in fiber (dB/km)
 - » Causes
 - Absorption and scattering in glass
 - Glass impurities, fiber imperfections, bends
 - » Minimum loss at 1550 nm

- Fiber dispersion
 - Pulse spreading limits maximum data rate
 - Causes
 - » Fiber modes
 - » n is function of wavelength
 - » Waveguide effects
 - Zero dispersion in SM near 1300 nm (and 1550 nm)
- Nonlinear effects
 - Accumulate over long distances
 - Limit maximum power that can be put into fiber